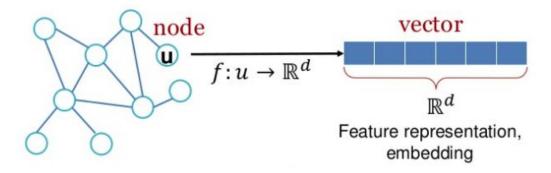
Graph Representation Learning

Nikita Yadav, Rashi Verma, Rishabh Gupta, Swyam Prakash Singh

Feature Learning in Graphs

Goal: Map each node into a low dimensional space which encodes network information.

Motivation: Various applications such as clustering, link prediction, label classification, ...



Feature Learning in Networks

- 'Linearizing' the graph
 - Create a sentence for each node using random walks
 - Node2vec

- Graph Convolutional Networks
 - Uses Convolutional architecture with deep network.
 - GCN

Node2vec: Unsupervised Feature Learning

- Let G = (V, E) be any (un)directed, (un)weighted network. Learn node embeddings f: V -> R^d such that nearby nodes are close together.
- Objective: $\max_{f} \sum_{u \in V} \log Pr(N_S(u)|f(u))$

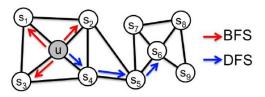
• Assume Conditional independence: $Pr(N_S(u)|f(u)) = \prod_{n_i \in N_S(u)} Pr(n_i|f(u))$

Then Softmax:
$$Pr(n_i|f(u)) = \frac{\exp(f(n_i) \cdot f(u))}{\sum_{v \in V} \exp(f(v) \cdot f(u))}$$

Node2vec: scalable feature learning for networks, A. Grover, J. Leskovec, KDD 2016

How to determine N_s(u)?

- Classic strategies to define neighborhood N_s(u) of a node u.
 - BFS captures homophily.
 - DFS captures structural equivalence.



- Interpolating BFS and DFS
 - **Return parameter p**: return back to the previous node.
 - **In-out parameter q:** Moving outward (DFS) vs inwards (BFS)

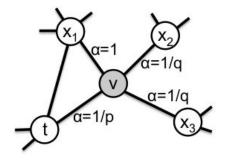
Random walk procedure

Sampling of nodes uses probability distribution given by

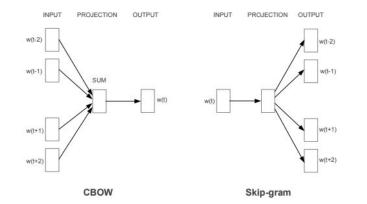
$$P(c_i = x \mid c_{i-1} = v) = \begin{cases} \frac{\pi_{vx}}{Z} & \text{if } (v, x) \in E\\ 0 & \text{otherwise} \end{cases}$$

$$\pi_{vx} = \alpha_{pq}(t, x) \cdot w_{vx}$$

$$\alpha_{pq}(t,x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0\\ 1 & \text{if } d_{tx} = 1\\ \frac{1}{q} & \text{if } d_{tx} = 2 \end{cases}$$



The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word

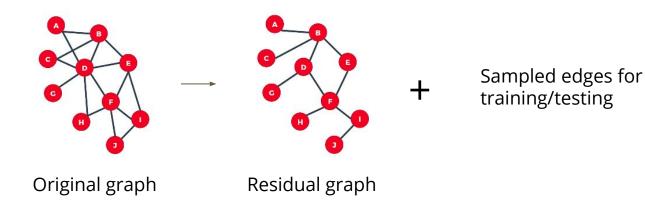


Node2vec extends the skip-gram architecture to networks.

Source: Efficient Estimation of Word Representations in Vector Space, T Mikolov et. al.,

Link Prediction

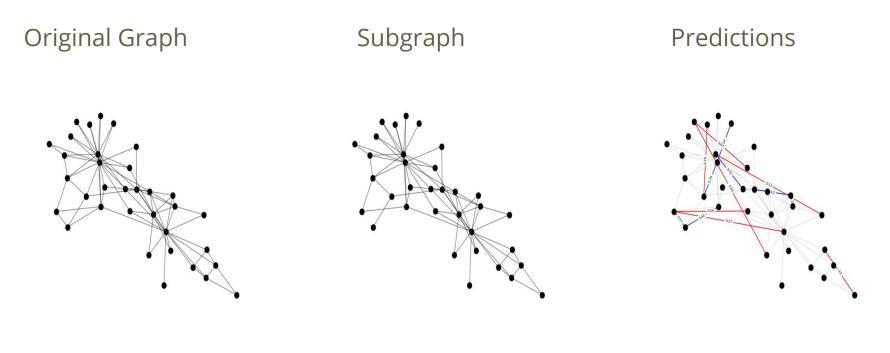
- It is the task to estimate the probability of links between nodes in a graph.
- Link prediction heuristics scores:
 - Common Neighbors : |N(u) ∩ N(v)|
 - Jaccard's coefficient : |N(u) ∩ N(v)| / |N(u) ∪ N(v)|
 - o ...
- How we did link prediction using node2vec?



Datasets

- Zachary's karate club Network
 - Contains 34 nodes and 78 edges, where each link is between pair who interacted outside the club.
- Facebook dataset
 - Network between facebook friends. It contains 4,039 nodes and 88,234 edges.
- BlogCatalog dataset
 - Network of social relationships of the bloggers listed on the BlogCatalog website. It has 10,312 nodes, 333,983 edges.

Results - Zachary's Karate Club Network



Results on Facebook and BlogCatalog Dataset

Table 1 : Mean Auc scores

dataset	Hadamard	Average	L2	L1
Facebook	0.9551	0.6443	0.986	0.9858
BlogCatalog	0.5829	0.6396	0.9032	0.8982

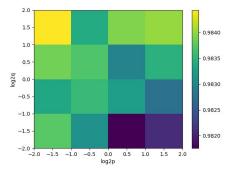


Fig. Grid search over parameters p and q, with Weighted L2

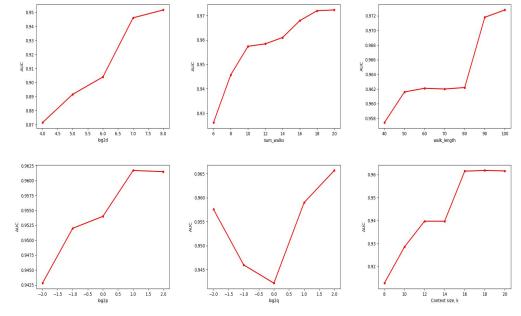


Fig. Parameter Sensitivity plots

Node2vec on weighted signed network

- Future extensions of node2vec:
 - Signed edge networks
 - Heterogeneous information networks

o ...

- We explored ways to extend node2vec for weighted signed network
- Dataset: Bitcoin OTC trust weighted signed network¹
 - Edge weight range: -10 to 10
 - Contains 5881 nodes and 35592 edges.

1. Bitcoin OTC trust weighted signed network, https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

• Convert edge weight in range 0 to 1.

• Result of link prediction: 0.88 AUC score with weighted L2 edge function.

Tuning of hyperparameters

Obtaining GCN embeddings

Unsupervised clustering on the graph using DEC technique

Graph Convolutional Network

Formulation of CNN in context of spectral theory.

Two approaches:

- Spatial considers local receptive fields upto neighborhoods only.
 e.g. locality on W, deep locally connected graph
- Spectral exploiting global structure of graph by graph laplacian to generalize convolutional operator
 - e.g. GCN

Background

- Main aim is faster training and higher accuracy.
- Requirement is learning fast localized spectral filters
- Laplacian L=D-W where D is degree matrix and W is adjacent matrix.
- For easiness we use convolution in fourier domain
- $x_g^* y = U((U^T x) \circ (U^T y))$ where is element wise product and U is fourier basis and obtained from eigen decomposition.
- U is some function of eigen value of L which can be well approximated by chebyshev polynomial-

$$g_{\theta'} \star x \approx \sum_{k=0}^{K} \theta'_k T_k(\tilde{L}) x$$

- Taking upto Kth order of chebyshev polynomial will give K -localized expression
- If K=1, stacking multiple such layer will give rich class of convolutional filters
- Forward model -

$$Z = f(X, A) = \operatorname{softmax}\left(\hat{A} \operatorname{ReLU}\left(\hat{A}XW^{(0)}\right)W^{(1)}\right)$$
 where,

$$\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$$

Classification with chebyshev polynomial

Datasets used : Pubmed, Cora, Citeseer

No of layers	Maximum degree	Accuracy
2	3	79.70 %
2	2	80.50 %
3	3	78.70 %
3	2	80.40 %

Table 1: Cora

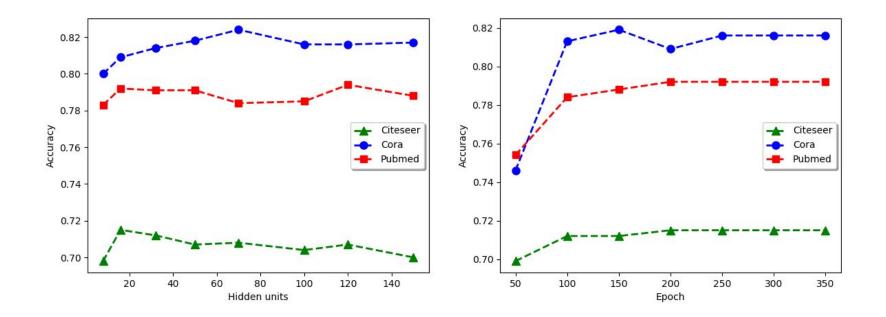
No of layers	Maximum degree	Accuracy
2	3	79.17 %
2	2	79.30 %
3	3	79.30 %

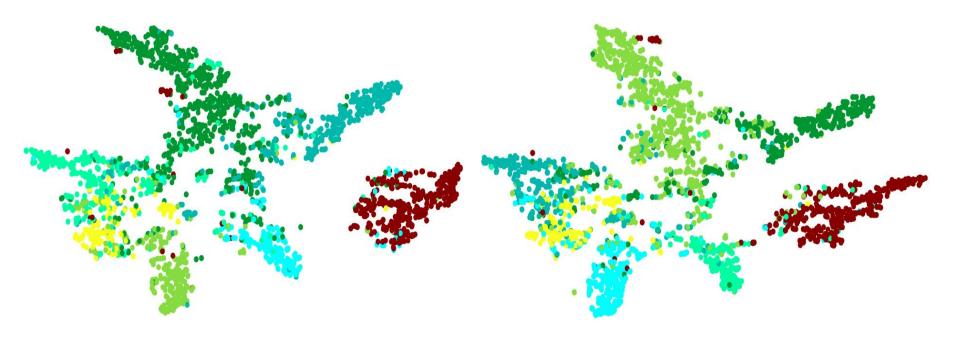
Table 2: Pubmed

No of layers	Maximum degree	Accuracy
2	2	71.50 %
2	3	71.50 %

Table 3: Citeseer

Tuning hyperparameters





200 epoch

400 epoch

Deep embedding Clustering

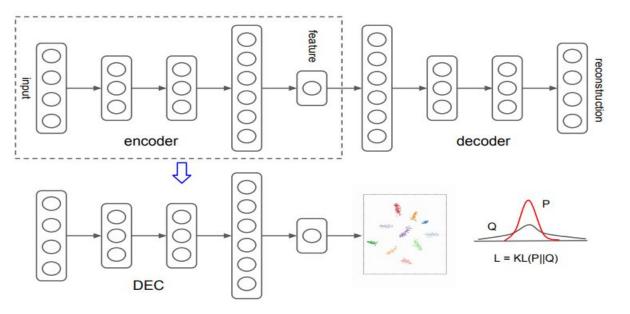
Method which simultaneously learn:

- Unsupervised Clustering using deep neural network
- Non linear mapping high dimension data space to lower dimension data space

Proposed by Xie et. al

DEC has two phases:

- Parameter initialization with deep autoencoders
- Parameter optimization/clustering based on minimizing KL divergence with help of auxiliary target distribution computation.



Implementation

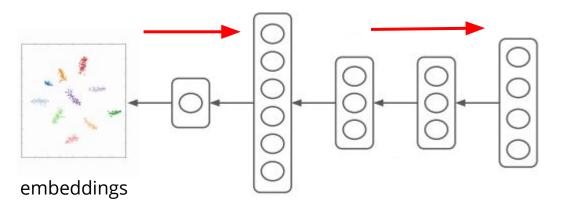
- Determining hyperparameters by cross validation is not an option
- Commonly used parameters are used

Experiments

- Dataset- MNIST
- Clustering Accuracy- 83.42 %
- Number of encoder layers- 3
- Number of decoder layers- 3
- Dropout- 0.2

Finally we tried connecting both these models...

- We obtained graph embeddings from GCN
- Next we used DEC model but instead of encoder we used the embeddings obtained from GCN
- In DEC we used autoencoder where training is done using reconstruction loss
- But, in our model we used original feature vector instead of the gcn embeddings to train on reconstruction loss



Dim = Dim of original feature vector

[1] node2vec: Scalable Feature Learning for Networks. A. Grover, J. Leskovec. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2016.

[2] Mikolov, Tomas; et al.. "Efficient Estimation of Word Representations in Vector Space", 2013

[3] William L. Hamilton, Rex Ying, Jure Leskovec, Representation Learning on Graphs: Methods and Applications, IEEE Data Engineering Bulletin, September 2017

[4] Michael Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on " graphs with fast localized spectral filtering (NIPS), 2016

[5] Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, 2016

[6] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis. ICML 2016.